CALCOLO SCIENTIFICO
Rossana Vermiglio
Davide Liessi
-linear algebra (vector spaces, linear applications, matrix computing, Euclidean spaces)
-real numbers, functions anf their graphs, sequences, function’s limits, derivatives. Absolute value and norm of a vector.
It is also highly recommended to have skills on basic tools of programming.
A score is assigned to each question. If the score of the written test is greater than or equal to 18/30, the oral exam is optional (compulsory in car of distance teaching) The student, absent to the oral test, which has a positive score in the written test can refuse it by using the esse3 procedure
OBIETTIVI FORMATIVI
Objectives
stability and complexity of the related numerical methods. In this introductive course the students learn about
-the sources of errors due to the use of the computer (rounding errors and their propagation, well/ill-conditioned problems; stability of algorithms);
-the numerical methods for solving nonlinear equations and linear systems, to approximate data and functions, together with the relative analysis of convergence, stability and complexity.
The theoretical knowledge is complemented with the solution of exercises and the study of some test examples to learn how critically analyze the results of numerical simulations.
The learned skills allow the interested students to continue the study of the discipline at advanced level and, to encompass scientific computing problems arising not only in computer science but also throughout the natural sciences, social sciences, engineering, medicine, and business. -critically analyze the results of the numerical simulations.
CONTENUTI
– Numerical methods for solving nonlinear equations.
– Linear systems: triangular systems, direct methods (LU factorization, Choleski factorization), perturbation analysis and condition number. Overdetermined systems of linear equations.
-Approximation of data and functions via interpolation: polynomial interpolation (Lagrange polynomial, Newton polynomial, Hermite polynomial; interpolation error, Chebyshev points); interpolation by piecewise polynomials and spline functions; B-splines, parametric interpolation; Bezier and B-spline curves; trigonometric interpolation and FFT.
-Approximation of data and functions via least squares method.
All the topics also include the solution of exercises and the presentation of case-studies in MATLAB.
TESTI DI RIFERIMENTO
– A. Quarteroni, F. Saleri “Introduzione al calcolo scientifico”. Springer Verlag 2002
– C. Moler “Numerical computing with MATLAB”. SIAM 2005