Teachers
The course could be held in English, upon proposal of the competent teaching structure.
Knowledge and understanding: To know some basic concepts and results of differential geometry. To recognize a geometric problem which is resoluble through differential geometry methods.
Ability to apply knowledge and understanding: To know how to deal with and solve some classical problems of differential geometry. To find analytical and geometric applications of differential geometry
Independent thinking: To know how to find the most appropriate analytical or geometric techniques in solving assigned problems. To address the difficulty of specific problems both in complex analysis of one variable and in differential geometry.
Communication skills: To introduce, orally and in writing, a subject, or a mathematical theory, learned during the course. Being able to present to a non-specialist public the salient aspects of classical theory of analytic functions in one complex variable, of Riemann surfaces, and of curves and surfaces immersed in ordinary space.
Learning ability: to be able to read a graduate degree book in the fields covered by the course. To work independently in literature search. To address the proposed problems by selecting independently the most meaningful ones.
M.P.Do Carmo, “Differential geometry of curves and surfaces”
M.P. Do Carmo “Riemannian geometry”
Università degli Studi di Udine
Dipartimento di Scienze Matematiche, Informatiche e Fisiche (DMIF)
via delle Scienze 206, 33100 Udine, Italy
Tel: +39 0432 558400
Fax: +39 0432 558499
PEC: dmif@postacert.uniud.it
p.iva 01071600306 | c.f. 80014550307
30 km from Slovenia border
80 km from Austria border
120 km from Croatia border
160 km South West of Klagenfurt (Austria)
160 km West of Lubiana (Slovenia)
120 km North East of Venezia (Italy)