Teachers
The course could be held in English, upon proposal of the competent teaching structure.
Knowledge and understanding: To know some basic concepts and results of the course. To know some modern problems of algebraic geometry, recognizing their difficulty. To know how to use the modern language in formulating algebraic geometry problems.
Ability to apply knowledge and understanding: To know how to deal with and solve with modern or elementary language some classical problems of algebraic geometry. To find relationships between issues of algebraic geometry and problems or theories in different fields. To know how to solve problems beyond those discussed during the course Independent thinking: To know how to find the most appropriate analytical, algebraic, or geometric techniques in solving assigned problems. To address the difficulty of specific problems in algebraic geometry.
Communication skills: To introduce, orally and in writing, a subject, or a mathematical theory, learned during the course. Being able to present to a non-specialist public the salient aspects of classical theory and some modern problem of projective algebraic geometry.
Learning ability: to be able to read a research paper in the fields covered by the course. To work independently in literature search. To address the proposed problems by selecting independently the most meaningful ones.
Iitaka, Shigeru, Algebraic geometry. An introduction to birational geometry of algebraic varieties. Graduate Texts in Mathematics, 76. North-Holland Mathematical Library, 24. Springer-Verlag, New York-Berlin, 1982. x+357 pp. ISBN: 0-387-90546-4
Shafarevich, Igor R., Basic algebraic geometry. 2. Schemes and complex manifolds. Third edition. Translated from the 2007 third Russian edition by Miles Reid. Springer, Heidelberg, 2013. xiv+262 pp. ISBN: 978-3-642-38009-9; 978-3-642-38010-5
Arbarello, E.; Cornalba, M.; Griffiths, P. A.; Harris, J. Geometry of algebraic curves. Vol. I. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 267. Springer-Verlag, New York, 1985. xvi+386 pp. ISBN: 0-387-90997-4
Birkenhake, Christina; Lange, Herbert, Complex abelian varieties. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 302. Springer-Verlag, Berlin, 2004. xii+635 pp. ISBN: 3-540-20488-1
Università degli Studi di Udine
Dipartimento di Scienze Matematiche, Informatiche e Fisiche (DMIF)
via delle Scienze 206, 33100 Udine, Italy
Tel: +39 0432 558400
Fax: +39 0432 558499
PEC: dmif@postacert.uniud.it
p.iva 01071600306 | c.f. 80014550307
30 km from Slovenia border
80 km from Austria border
120 km from Croatia border
160 km South West of Klagenfurt (Austria)
160 km West of Lubiana (Slovenia)
120 km North East of Venezia (Italy)