Teachers
The criteria for rating decision are those decided by the “Corso di Studi” and can be found at: https://www.uniud.it/it/didattica/corsi/area-scientifica/scienze-matematiche-informatiche-multimediali-fisiche/laurea/internet-of-things-big-data-machine-learning/corso/regolamento-corso/all-B2
1.Introduction
a.Examples of social media, relevance to data science (socials are a source of data and users, and a ground where interesting phenomena happen)
b.Examples of Crowdsourcing. Success stories and failures.
2.Social media
a.Concepts: Definition. Examples. Classification (generalist, verticals, private) b.Foundations: Historical background (social network analysis, network science). Elementary network science.
c.Applications. APIs to access data from socials (case studies: Twitter or Facebook or Telegram)
3.Crowdsourcing
a.Concepts: Definitions, Examples. Collective intelligence
b.Foundations: The general case of Human computation. Characteristics needed for successful Crowdsourcing. Computability (brief account)
c.Applications: usage of a Crowdsourcing platform (Amazon’s Mechanical Turk) to design and run experiments. Analysis of results.
4.Case studies and specific issues
a.Ethical, moral, legal aspects
b.Economic aspects (SEO, business models, crowdfunding)
c.Social-aware programming (multiagent systems, society design; genetic algorithms; map/reduce)
d.Hybrid systems
Università degli Studi di Udine
Dipartimento di Scienze Matematiche, Informatiche e Fisiche (DMIF)
via delle Scienze 206, 33100 Udine, Italy
Tel: +39 0432 558400
Fax: +39 0432 558499
PEC: dmif@postacert.uniud.it
p.iva 01071600306 | c.f. 80014550307
30 km from Slovenia border
80 km from Austria border
120 km from Croatia border
160 km South West of Klagenfurt (Austria)
160 km West of Lubiana (Slovenia)
120 km North East of Venezia (Italy)