Home » Dottorati di Ricerca » Dottorato di Ricerca in Scienze Matematiche e Fisiche » Dottorandi » Alessandro Armando Vigliano
Supervisor: Barbara De Lotto
+39 0432 558236
Stanza / Room: L1-05-BE 1° Piano
vigliano.alessandroarmando@spes.uniud.it
Multi-messenger astrophysics, a long-anticipated extension to traditional and multi-wavelength astronomy, has emerged in the last years as a distinct discipline providing unique and valuable insights into the properties and processes of the physical universe. These insights arise from the inherently complementary information carried by photons, gravitational waves, neutrinos, and cosmic rays about individual cosmic sources and source populations.
Among the various sources that will benefit from this type of study, fast transients are a particularly interesting class of phenomena: these consist mainly of Gamma Ray Bursts (GRBs), Fast Radio Bursts (FRBs) and gravitational wave phenomena.
Transient phenomena have been intensively studied over the years, with both satellite and ground observations. Particularly noteworthy, of this second category, are the Major Atmospheric Gamma Ray Cherenkov (MAGIC), High Energy Stereoscopic System (H.E.S.S.) and Cherenkov Telescope Array (CTA) telescopes, which use the atmosphere as a detection medium to obtain accurate observations at the highest energies (TeV). Of these three, the first two have been active for years, achieving brilliant results, while CTA is still under construction and will be the flagship instrument of the next generation VHE observations. Other noteworthy instruments for the study of these phenomena are the interferometers of the LIGO-Virgo collaboration which led to the first direct detection of gravitational waves originated from the coalescence of compact objects (binary systems of black holes and/or neutron stars), effectively starting a new era for multi-channel astronomy.The multi-messenger and multi-wavelength study of transient phenomena is of fundamental importance to understand their origin and the physics that governs their sources and in order to do so, good observational strategies, involving different instruments, must be developed.
The objective of my PhD project is to exploit the excellent synergies of CTA with instruments such as LIGO-Virgo, KAGRA, HERMES, SVOM and AMEGO to study in depth the physics of fast transient astrophysical phenomena.
A most important aspect of the study of transient phenomena is their multi-channel observation and in particular the development of solid strategies that will allow the identification of the EM counterparties of GW events detected by facilities such as LIGO-Virgo. This will be extremely useful to raise the number of Electromagnetic counterparts of GW events and obtain better statistics (in addition to the very important information that the joint detections will bring us).
For this purpose the optimization of the so-called “Divergent mode” of CTA is being prepared. This will increase the field of view of the CTA instrument to search for the EM counterpart of GW events and for the detection of the VHE component for these phenomena.
Pointing speed and accuracy are a fundamental requirement for these studies to coordinate the observations of multiple telescopes (not all having large fields of view) and optimize the data. To this end, developing automated pre-selection procedures for important events, based on our understanding of the fundamental mechanisms behind them, is a fundamental strategy for the near future.
Topics:
This project covers a broad spectrum of aspects of the study of fast transient phenomena, ranging from the theoretical modeling of such sources to the evaluation of the ability of future instruments to perform excellent measurements.
Università degli Studi di Udine
Dipartimento di Scienze Matematiche, Informatiche e Fisiche (DMIF)
via delle Scienze 206, 33100 Udine, Italy
Tel: +39 0432 558400
Fax: +39 0432 558499
PEC: dmif@postacert.uniud.it
p.iva 01071600306 | c.f. 80014550307
30 km from Slovenia border
80 km from Austria border
120 km from Croatia border
160 km South West of Klagenfurt (Austria)
160 km West of Lubiana (Slovenia)
120 km North East of Venezia (Italy)