Seminario Stéphan Demri

Modal Separation Logics and Friends

Stéphan Demri

Directeur de recherche at CNRS Paris-Saclay

COSA

CONFERENZA

QUANDO

27/02/19 16:30

DOVE

Sala Riunioni

REFERENTE

Dario Della Monica
dario.dellamonica@uniud.it

DESCRIZIONE

Separation logic is known as an assertion language to perform verification, by extending Hoare-Floyd logic in order to verify programs with mutable data structures. The separating conjunction allows us to evaluate formulae in subheaps, and this possibility to evaluate formulae in alternative models is a feature shared with many modal logics such as sabotage logics, logics of public announcements or relation-changing modal logics. In the first part of the talk, we present several versions of modal separation logics whose models are memory states from separation logic and the logical connectives include modal operators as well as separating conjunction. Fragments are genuine modal logics whereas some others capture standard separation logics, leading to an original language to speak about memory states. In the second part of the talk, we present the decidability status and the computational complexity of several modal separation logics, (for instance, leading to NP-complete or Tower-complete satisfiability problems). In the third part, we investigate the complexity of fragments of quantified CTL under the tree semantics (or similar modal logics with propositional quantification), some of these fragments being related to modal separation logics. Part of the presented work is done jointly with B. Bednarczyk (U. of Wroclaw) or with R. Fervari (U. of Cordoba).

Lascia un commento